OSI/UK User Group Newsletter

Vol.2 No.3 April/May 1981

Binary juggling
8" discs on Superboard O BASIC renumberer O Series 2 review
and plenty more besides!

Editorial

The influence of Ma-Com?
Despite the utterances of a trade colleague who insists that OS] are ‘not just dying, but
dead" in the States, the re-formed (or reformed?) company seems remarkably active. Par-
ticularly on larger systems, perhaps, but on smaller systems too. For example, already
known to existare: a 54" mini-Winchester, about 5Mbyte capacity (release date August);
the 541 high-res (512 x256) graphics board, complete with || ht-pen interface, and stack-
able for colour; a double-processor ‘evaluation’ board with both ZB000 and 68000 pro-
cessors — complete with a Microsoft Unix package (Unix multi-user operating system,
BASIC, Pascal, Fortran, and C languages) — for release Autumn ‘81 ;and communications
software for the Ethernet network protocol, available at the end of ‘81,

Known to be under development is a complete new ‘personal’ range of 16-bit systems,
the C5; a new high-density (1 Mbyte) 5'/4” mini-floppy add-on; and a double density IBM-
compatible 8" disc controller board. More on the rumour side, but still interesting, is the
murmur that OSI's research/development wing is due to move to the more fertile lands of
California, at the Okidata plant that OSI bought before being taken over by Ma-Com: and a
rather more definite murmur that that remarkable hardware design team are working on
tweaking the already impressive performance of the Okidata 74 Mbyte drive to 300 Mbyte
by 1982, and aiming for 1 Gbyte (1000 Mbyte) by 19831

Clearly quite a few of OSI’s stated plans are communications-oriented, following the in-
fluence of its new owners Ma-Com, who ‘intend to be the leaders in the communications
industry’, to quote one of their recent blurbs. With the increasing interest in networks and
‘electronic mail things certainly do look interesting on the OSI front.

A problem of time

As you will no doubt have noticed, this Newsletter is distinctly late! Partly because of clas-
sic difficulties like school holidays; partly because of major equipment changes going on
at Wordsmiths; but mainly because the User Group has become too bigto be handled as a
part-time occupation. Elsewhere in this issue you'll find a section marked HELP! — and
that is exactly what we need.

We urgently need people to help us with the practical running of the Group. Handling
telephone calls, answering queries; editing rough texts into readable form, redrawing
scribbled schematics; checking out routines sent in, researching all the various loopholes
and ideas that arise in this fascinating field. We've asked people to do this before, and
many people have volunteered — the problem is that we still have to sort all the material
out first before sending it on, and even that is now taking up more time than we can afford
(between us we probably average 10-12 hours a day on User Group matters . . .). So
would any members be interested in helping us by literally taking away some of the work-
load! We have suitable facilities for testing in the ComputrTown set-up in Street, if anyone
is down Somerset way; and both George and Richard are accessible — if not always avail-
able — in London.

Getin touch with us as soon as you can if you really can help!

Editor/documentation

Tom Graves: 19aMWest End, Street, Somerset BA16 OLQ; Street (0458) 45359 (pref. early
evenings)

Hardware/disc systems v

George Chkiantz, Richard Elen: 12 Bennerley Road, London SW11 6DS

For those who are new to the Group, we exist to provide an information service and ex-
change on all matters on Ohio Scientific and related systems — UK 101 and others. Mem-
bership is £10 a year, mostly for six issues of this Newsletter; the ‘year’ begins December.
We also handle technical queries and the like; but as mentioned above, it's becoming in-
creasingly difficult to answer them promptly!

1

C ¢

BASIC notes

Input without delimiters _ ' o . N
Roger Derry has finally cracked the mput—wnhput-dellmlters problem set us by Jaqk Pike
some time ago. In ROM BASIC, the INPUT routine treats commas and colons as delimiters
— causing real problems with text-handling applications, which tend to throw away
chunks of name-and-address files with the bald statement EXTRA IGNORED. We have
had a number of ‘fixes’, nmrost of them using machine-code patches intercepting the text
passing through the input vector. Roger’s routine, however, is entirely in BASIC:

You have written several times about ways of being able to input strings without being
clobbered because BASIC uses colons and commas as delimiters. So far most of the ways
round have used machine code or relied on string addition. | enclose a short demqnstra-
tion routine that uses no machine code and will accept any keyable character, with 'RE-
TURN” as its delimiter. The only character not accepted is ‘Line-reen’, which can be dealt with
in software. . _

The routine is a development of the Aardvark screen-clear routine published by you
about a year ago. | have already written to Richard and George about some other uses for
the technique, but here is a specific use. It relies on the fact that if you POKE the string
pointers onto the screen and place, in this case, A$ onto the screen, the computer will al-
ways look there to find A$. Any string made equal to A$ will be filled with the current con-
tents of that part of the screen. .

In the enclosed routine (written for a UK101 under CEGMON, but easily adaptable for
the other monitors) the cursor is first put at the bottom of the screen so that linefeeds do not
affect the line being written on. The routine then calculates the address of tvhe end of the
line using CEGMON'’s SWIDTH screen line-length and the text pointers. A$ is then manu-
factured to be SWIDTH long and then stored onto the screen by a dgmmy addition. | have
made A$ up of CHR$(187)s so as to be visible, but a practical routlne'would use spaces.
After this initialisation the normal keyboard (or editor) call is used to printonto the screen.
At this stage no strings are involved — certainly no string addition. Lines 330, 335, }40
and 350 are used to check for ReTurN, END-OF-LINE OF space with eight characters of end-of-line
for auto-CR/LF. Once a new-line requirement is detected, the characters on the screen are
put into a string. As the line may be shorter than SWIDTH, LEFT$(A$, PEEK(512)) is used
to edit A$ to the same length as the position of the cursor along the line (512 holding the
current screen-cursor displacement from the beginning of the line), so that no rgdungant
spaces are included in the string to screw up subsequent editing or manipulation. ‘une-
reen’ could be used as an “ignore-line’ control rather like @ in BASIC. _ _

The following routine is just a demonstration, but it should give some idea of what this
type of routine can do.

120 FOR D=1 TO 32: REM simple screen-clear
125 REM record end-of-text line (CEGMON pointers)
126 REM 546 is SWIDTH, 555/6 are TEXT pointers
130 A=PEEK(555): B=PEEK(556)
147)=B*256+A+PEEK(546)
1 U}M force A$ to be on screen
1505=INT(Q/256)
160 Q=Q—(5*256) »
170 REM generate A$ to be as long as screen width
171 REM use CHR$(32) for text line not to be shown
180 FOR X=1 TO PEEK(546): A$=A$+ CHR$(187): NEXT
185 REM put A$ onto screen
190 C=PEEK(129): D=PEEK(130): POKE 129,Q: POKE 130,S
200 A$=A%$+"": POKE 129,C: POKE 130,D

250 REM text entry

300 POKE 11,0: POKL 12,253: REM calls keyboard routine direct

310 DIM A$(10): REM array for 11 lines of text

320 FOR X=1TO 10

330 IF PEEK(512)>46 THEN KS=13: GOTO 335

332 GOSUB 2000

335 IF KS=13 AND PEEK(512)=0 THEN 330

340 IF KS=13 THEN A$(X)=LEFT$(A$,PEEK(512)): PRINT: GOTO 400
350 IF KS=32 AND PEEK(512)>PEEK(546)—B THEN PRINT " ”;: KS=13: GOTO 340
360 PRINT CHR$(KS);: GOTO 330

400 NEXT X

500 FOR X=0TO 10: PRINT A$(X): NEXT

600 END

999 :

2000 X=USR(X): KS=PEEK(533): RETURN

2010 REM KS=PEEK(531) on non-CEGMON monitors

Stack limits in FOR/NEXT and GOSUB: "the other OM error’ again

If you've found that your otherwise reliable program suddenly develops OM ERRORs, it’s
probably because you’ve jumped out of a FOR/NEXT loop or GOSUB without finishing it
properly. FOR/NEXT loops must complete their sequence; if you wantto jump out, set the
X or whatever to the last value, and then call a NEXT. And GOSUBs must meet their RE-
TURNSs in the right sequence.

OSlI’s use of the stack in BASIC is most peculiar. A whole mass of problems arises be-
cause, for some reason known only to themselves, OSI have placed their NMland IRQ in-
terrupt vectors in the middle of the 6502 system stack. The monitor resets the stack pointer
to $0128. On the other hand, BASIC’s warmstart expects it to be at $01FF, and complains
by issuing an OM ERROR on the first active command after a warmstart. (If this worries
you, type a dummy line after a warmstart: the error printer — for an SN ERROR, for exam-
ple — resets the stack, as does the RUN command.)

Other problems arise because OSI’s BASIC jealously protects the stack area below
$0130 — the NMI jump location. It also happens to use the space below this in order to
construct numeric output to the screen. Look at the code from $B95E onwards to see how
it does this. BASIC commands use the stack extensively for subroutine calls — printing a
single character to the screen uses 19 stack levels, for example. But FOR/NEXT and GOS-
UB use the stack very heavily to store their return line-numbers and values, so that nested
FOR/NEXTs and GOSUBs can quickly run out of room. Each GOSUB uses seven stack
levels; each FOR/NEXT loop uses sixteen. Which means that FOR/NEXT calls can only be
nested twelve depe — not including stack levels required for printing or anything else —
while GOSUBs can in theory be stacked twenty-seven deep.

The other problem will occur if you try to use the NMl and, particularly, the IRQ vectors
of the 6502 to drive items like a real-time clock — because BASIC’s stack use will almost
certainly overwrite their code. The IRQ jump is stored at $01CO in the stack; itwould only
take a single nested FOR/NEXT (a timing loop inside an output-array routine, for example)
with a PRINT call to overwrite the IRQ jump code. The NMl is somewhat safer, well down
in the stack, but a single coding error for GOSUB or FOR/NEXT will crash that.

The amusing thing is that OSI’s error-protection in its stack-handling works superbly to
protect the NMI jump from being overwritten from beneath — but waits until the jump has
actually been overwritten from above before issuing its OM ERROR!

3

Series 2 — some surprises
Tom Graves

When we first saw the new C1 Series 2, we took an instant dislike to it. It looked wrong, it
felt wrong. The firmware had all the old infuriating bugs in it. Nothing seemed to have
been done at all. The old package was dressed up in an even worse-looking guise than be-
fore.

Now we’ve had time to look at it more closely, we have to revise our opinions! The
firmware may be unchanged, but the hardware is deceptively different — and very much
improved.

| bought a Series 2 Superboard for a specific OEM purpose: a code-translator from AS-
Cll to the mangled version of TTS that my new typesetter uses. As a result of my somewhat
non-standard interest, | looked very closely at the (as usual, blurred) schematics supplied
with the unit. The better-known new features, like the D-to-A converter, the power-on-
reset and the two-way screen format were there in their muddled detail. But so were a few
complete surprises: ‘

« even on the Superboard, the RS-232 is fully implemented. Adding a three-way switch
gives not just cassette, but RS-232 and/or modem at an alternative baud rate.

« the colour option, in principle handled by the still-not-yet-ready 630 board, is in fact
largely implemented on the Superboard. All the signals are produced or interpreted by the
Superboard, and only the encoding is handled externally.

« all of the BASIC ROM sockets are ready-wired as 8K sockets (for a 2664 ROM, but
equally a batch of 2716s on a piggyback board).

+ altering a set of links gives the option of using the existing BASIC ROM space for four
independent 8K blocks with the same nominal address space, switched by a software
switch.

» and the usual maze of links for all manner of unexplained purposes!

Of these, the two most interesting (if only because undescribed in any way!) are the co-
lour and ‘block select’. The colour circuit design is rather like that on the existing 540
board used on the C4/C8 series, and with a little imagination the encoder described by Ri-
chard Elen could be adapted to work on the Superboard. All the colour signals go through
a separate connector — not the usual Molex but a 16-pin DIL socket just below the char-
acter generator. Outputs are: colour enable from the software switch; colour data from
the 2114 next to the main screen memory (boosted by an 8T28 just below it); and an ill-
defined signal called CHLD (generated by U19, an LS20 at 4A4 in the schematics). A link
cut at 4A2 isolates the video as VID output, and returns as the VID 1 input from the encod-
er. And externally generated composite sync and SVID are also input through the header
(although they appear to be marked as outputs!). In general, most of the control informa-
tion is there — so if anyone does feel like building a PAL encoder, let us know!

More interesting from my own point of view as a machine-code nut s the block-switch-
ingoption. Very little is involved in this in the way of hardware: it’s all there when a hand-
ful of links are cut. Normally the chip-enables go direct from A11 and A12 to pin 20 of
each t j chip, via a somewhat bizarre juggling act with a 3-into-8 LS138 and a set of
inverte U16. The inverters can be isolated by links for each chip (unlabelled, of
course). The third line of the 3-into-8 comes from the R/W line, suggesting that the read
cycle goes to the BASIC chips, while the write cycle addresses a nonexistent chip some-
where from $8000 to $9FFF.

Pins 18 and 20 on the BASIC chips are normally tied high. But the option is there on the
board for all the chips to have A11 and A12 going direct to pins 18 and 20 — at the same
time. This option is taken up only when the block-select option is used: the block-select
lines from the software switch drive the existing 3-into-8 LS138 for the chip selects instead

4

OLATTand T2 Look atthe schematic 2A4 and 284 together with the software switch
UZat4CT gorthe circuitey hehind this, 10 quite atangle, but very clever.

The nextquestionis what do OSEintend to do with eWeve heard whispers of a “'mi-
Ni=Pascal-in-ROM and a tew other hints, but nothing detmite has appearced. In the mean-
time, the circuitry now exists on the hoard to drive Tanguage cards” as discussed in the last
editorial. Anyone building an LPROM ard 1o plug mto these 2664-type sockets, please
letus know!

The software switch addressed at $D80O0O, 55926 controls most of the new fea-
tures: hit O controls the screen tormat, bit | controls ¢ olour, and bit 4 the sound/DAC, ac-
cording to the C1manual. (When set, the screen is wide, the colouris on and the sound is
on, respectively.) The software switch is wired with six data lines in; but since pin 10 of
the LST74 goes nowhere, it would suggest that the bits controlling the block switc hing
would be bits 2 and 3 decimal values 0, 4, 8 and 12000 anyone cares 1o experiment,
again, let us know!

The /A (digital/analogue) converter is a fairly crude but reasonably effective cight-hit
POTL, using an array of resistors strung across the keyboard lines to control the output level
ol a noise” line, coming out of the 4 two-pin Molex socket to the left of the keyboard. In
BASIC, it can only really produce noise — you'll hear a buzz it you plug an amp into the
line atter you POKE 55296, 16 to enable the port. It you POKE a valuce into the keyboard
port, or it you press keys, the background of the buzz will change. Within a BASIC pro-
gram, the value placed into the keyboard portwill be latched, but the "¢ iri-C’ Choeck must
be disabled (POKE 530, 1) for it to stay there, as with all soltware scanning of the key-
board. For anything resembling a true digital/Zanalogue control, however, the port has to
be driven continuously, in machine-code: OS| give asample program in the C 1 manual,
producing a square wave with an ncreasing frequency. Apparently they also produce
‘music generation” software for the C1P-MF Scrics 2, though we have not yet seen it

Allin all, there's a ot more in the Series 2 than we thought. As usual, although OSI's
software and firmware may leave much to be desired, their hardware is excellent, well
thought out, versatile and reliable. We do wish, though, that they would bother (o de-
scribe all these features in the manuals!

A NEW LOOK FOR OSI
R. Elen

Things, it might seem, are changing down in Aurora. Maybe it would have happened an-
yway: maybe it's because OSI is ‘under new management’. Whatever the reason, the
new C4P Users Manual, if it is an indication of what we should expect from OSlin the fu-
ture, is more than welcome. If you've been permanently upset by the almost legendary
standard of OSI’s previous documentation — the poor photocopies, the errors, the illogi-
cal layout, the ‘preliminary” message that seems to last forever - take a look at this man-
ual. If you have a C2 or a newer C4, this manual will be a godsend. While, in essence, it
is a properly printed version of the previous preliminary C4P Users Manual, this new
book — no doubt by now available from all good dealers — includes a lot more besides.
Over 152 neatly laid-out and printed pages describe both disk- and cassette-based Sys-
tems, and while Appendix F only describes PEEKs and POKEs to disk BASIC, there is little
else to complain about. Along with a full description of machine-specific functions and
operational hints, quite clear, full and easily understood discussions of such things as the
operation of a parallel port are considered, plus the options available via the 16-pin bus
system in the form of the CA-Series boards and their functions. The main headings in the
manual speak for themselves!

5

Introduction: Video display connection; Connecting the .flopp)‘/ or cassette; Sta.rtlng !hv
machine; Running a canned program; Basic programming; Graphics; Sound; ‘St(mnﬁ
files on cassette or disc; Advanced features; Joysticks and keypa(_is; AC remf)t_e cgntrp ;
“arallel 1/0O; Connection of 16-pin bus devices; Modem and terminal connections; Prin-
ter communications; Advanced topics. . .

T'his last section includes details on OSI’s new Plot BASIC...a BASIC version fjezngnegété
case graphics use. This will be a useful addition to the prevnously somewhat cLu e Pd ;
method we have all had to live with! The range of functions now available for the C4 ehl-
nitely puts itin a class unmatched by other machines in the price range.vl\n .addmon to the
above chapter headings, no less than 12 appendices cover further tOpIFS.
Troubleshooting and machine organisation; DeFaiIed Al15 pin'corjnectl(_)h? (for the con-
nection of 1/0 devices); Memory-map and mini-floppy organisation; Disc BASIC state(;
ments and error listings (this includes both disk aqd ROM BASIC error (‘()des)f P()KE an
PEEK list; Piano keyboard (variable values for use in music programs); Disk utllltle‘s,‘ Hex(;
to-decimal tutor and conversion tables; ASCII conversion chart; Character graphics an

’video screen layout; OS-65D user’s guide; 65V machine-code monitor; the USR func-

tion; Executing machine-language programs; Indiregt f§|e5 ‘(the best description any-
where of this invaluable 65D function); BEXEC; I/O distribution.
There is also a respectable index.) .
i isk- systems, there is sti

Although the book is still somewhat biased tow.ards dls_k baged systems,
plenty %here for the cassette user, and with the price of disk drives coming dow'/n all t.he
time (and it looks like there’s about to be a big breakthrough here any moment!), the in-
formation should become more useful to the C4 owner as time goes by.

It tooks very much as if OSl are about to bring their documentation standard up to a lev-
el of excellence matched only by their hardware, and for that they deserve a good hearty
pat on the back!

BASIC Renumberer

Tony Parsons

Here is a BASIC renumber routine for all BASIC-in-ROM systems — UK101 and OSI —
and written in BASIC programs. It has been throughly tested and debugged. .
The routine loads at the end of the program to be renumbered wnth' line 63000 acting as
a buffer between the two. 63000 was chosen as it is well above any line numbers likely to
ntered in normal programming. _
beTehneC(p))Lrjo;ram allows for Fs)elegction any first line number and any “difference between
line values” value. It adjusts all GOTO's, GOSUB’s and IF/THEN's etc. encountered in
the program. When its task is complete it finishes by listing the renumbered program.
The reniimbering task can be rather slow with this program, sometimes up to 15 min-
utes def ‘Swg on the size of the program to be renumbered and the number of GOTO’s
etc; incluwel as a confidence check tzerefore, is line 63081 which prints the line of the
ram that is currently being worked on. _
g?}%%liin:he renumberin; procgess produce a GOTO ‘line marker’ an order of magnitude
greater than the original, the whole program has to be moved,qp in memory to allow in-
sertion of the extra digit in the line. This action will cause an ‘R’ in the buffer line 63000 to

~'be removed.

R’s should be reinserted in line 63000 before the program is run again to allow adequate
buffer space. .

63000
63010
63015
63020
63030
63040
63050
63060
63070
63080
63081
63085
63090
63100
63110
63120
63130
63140
63150

REMRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
A=769: INPUT”1st line no, diff”; B,C

POKE15,42

D=PEEK(A)+ 256*PEEK(A+ 1)
J=PEEK(A+2)+ 256" PEEK(A+ 3)

IFJ=63000 THEN E3=A+4: GOTO 63060

A=0D:GOTO 63020

A=769

D=PEEK(A)+ 256 *PEEK(A+1): Ad=A
J=PEEK(A+2)+256*PEEK(A+3)

PRINT)

IF |=63000 THEN GOTO 63500

H=PEEK(A+4): I=PEEK(A=5): K=PEEK(A+6)
IFH=0THEN A=D: GOTO 63070

IF H=160 AND I<58 AND I>47 THEN GOTO 63150

IF H=160 AND K=32 AND I<58 AND I>47 THEN 63150
IFH=136 ORH=140 THEN GOTO 63150

A=A+1: GOTO 63090

H=PEEK(A+4)

63160IF H>57 OR H<48 THEN A=A+1: GOTO 63150

63170

O=0

63175 H=PEEK(A+4)

63180
63185
63200
63300
63310
63320
63330
63340
63350
63360
63365
63400
63402
63404
63406
63411

63412
63500
63510
63520
63522
63530
63540
63550
63600
63610
63700
63702
63710
63730

IF H>57 OR H<48 THEN GOTO 63300
O=(0%10)+(H-48): A=A+1: GOTO 63175
X=X+1: GOTO 63180

O$=STR$(O): A7=A

A1=769: N1=0
D1=PEEK(A1)+256*PEEK(AT+1)
J1=PEEK(A1+2)+256*PEEK(AT+3)

IFJ1=0 THEN N=(N1*C)+B: GOTO 63360
A1=D1:N1=N1+1: GOTO 63360
N$=STR$(N)

IF LEN(N$)<>LEN(O$) THEN GOSUB 63700
FOR X=1TO LEN(N$)
JIM=(ASC(MID$(N$,X+1,1)))

POKE((A+4+ X)—(LEN(N$))), JIM

NEXT

IF LEN(N$)>=LEN(O$) THEN GOTO 63420
A=A7: GOTO 63081

A=769: E=0

D=PEEK(A)+256*PEEK(A+1)
J=PEEK(A+2)+256*PEEK(A+3)

IF J=63000 THEN GOTO 63600
E=INT(B/256): B=B-(E*256)

POKE A+2,B: POKE A+3,E

A=D: B=B+C+(256*FE): GOTO 63510
POKE 15,72: LIST-62999

END

OZ=LEN(N$)-LEN(O$)

IF LEN(N$)>LEN(O$)THEN T=0Z: GOTO 63730
RETURN

FORY=1TOT

63735 A2=A4

63740 FOR X=E3TOA+4STEP-1

63750 W=PEEK(X): POKE X+1,W: NEXT
63760 E3=E3+1:D=D+1: A=A+1
63765 A2=A4

63770 P=PEEK(A2)+256*PEEK(A2+1): P=P+1
63772 P1=INT(P/256): P2=P-P1*256
63780 POKE A2,P2: POKE A2+1,P1
63790 D2=PEEK(A2)+256*PEEK(A2+1)
63800 J2=PEEK(D2+2)+256*PEEK(D2+3)
63802 IF J2=63000 THEN GOTO 63850
63810 A2=D2: NEXT X

63850 NEXTY

63855 RETURN

Disk Notes

48x32 conversion under 65D

A note from D. Amyes: Here is a short routine to modify the screen handling routines,
which I've added to the BEXEC* supplied on the system disk. It allows printing on the cor-
rect baseline, instead of halfway up the screen!

8 FOR 1=9666 TO 9804

9 IF PEEK (l<>0 GOTO 13

10 =I+1

11 IF PEEK(T)<>211 GOTO 13
12 POKE 1,125

13 NEXT

14 POKE 9801,215

15 POKE 9811,215

Running 65D disk programs on BASIC-in-ROM
Another note from D. Amyes, sent with CEGMON in mind, but applicable generally to
BASIC-in-ROM systems with disks.

Load from disk as normal. Reset (BREAK), and type ‘C’ for BASIC-in-ROM's cold start.
Answer 'MEMORY SIZE?” with the maximum available (eg. 24000) — if you just hit 'RE-
TURN’ you will lose the program!

Reset again and type ‘M’ to enter the monitor. Inspect locations 3279 and 327A; note
their contents, and place them on 0079 and 007A respectively.

Reset and type W. The program can then be run under BASIC-in-ROM, as if ithad been
loadec” R tape — but with rather less memory space!

Re-installing Centronics driver in 65D

A note from M.J. Bues: In the 5" floppy version for the C1P, OSI have deleted the parallel
printer port driver (device 4). As my OKI printer is supplied with a “Centronics port” in-
put, | have had to build a parallel port as per the 8" version for the C2 etc. at $F400. The
DOS has the initialization already but I had to add a change to give CB2 as an output for
the data strobe. The printer routine | have put on place of the serial CA10 (‘device 8') port.
The user can either PRINT#8 or change the output distributor to vector PRINT#4 to the
No.8 port.

8

Hardware Modifications: Double-Sided Drives
by Richard Elen

For those of you who are considering upgrading to disk, or even those of you who already
have, but need more storage in limited space, double-sided drives offer a relatively inex-
pensive option. Each surface of an 8in disk, for example, can handle over 250K of stor-
age, yeta double-sided drive doubles your capacity without requiring any more physical
space, and at a far lower cost than adding another single-sided drive (typical prices on the
U.K.,for a good-quality 8in drive, are £325 for s/s and £385 for d/s ex VAT).

The only disadvantage of a single d/s drive is that you can’t create a new disk with operat-
ing system as simply as you can with two drives: you still need ‘single drive copy” utilities,
as before. But you have twice the storage (and only one side needs to have the DOS on
it!). Incidentally, your s/s disks can still be used on a d/s drive (but not the other way
round).

OSI have a technical note available, number 27, which describes the conversion for a
470 board (the 505 modification is similar) and the A12 ribbon-cable header card for
double-sided operation (pages 16 to 18). The 470 board conversion is shown in figs 1 and
2. Figs 3 and 4 show the conversion to the A12 header card. This does, in fact, work.
However, the jumpering of the select lines is not strictly correct, and this could lead to
problems with more than one drive.

Device selection under OSI's disk operating systems makes use of both the SELECT and
SIDE SELECT lines to access devices A to D. There are tour SELECT lines, SELECT/O to /3,
corresponding to drive edge-connector (ribbon cable) lines 26, 28, 30, and 32 (odd-
numbered lines go to ground), and the SIDE SELECT line appearsd at pin 14. A drive is us-
ually jumpered (at the radial select jumper socket) to pick up SELECT/0. However, the
jumpering suggested by OSI ties this line (pin 26) to ground, while SELECT/3 (pin 32)
changes state merrily, unacknowledgewd by the drive.

The result is as follows: :

Device selected by DOS A B C D

Side of disk selected 0 0 1 1

While this is fine for one drive, what if you want to add another? (Note, incidentally, that
OSl intend you to have Devices A and C as sides 0 and 1 of the first drive, where Devices
B and D are the corresponding sides of the second drive.l suppose this gives you conti-
nuity with single-sided systems, in which Devices A and B would be the 0 (only) sides of
the two drives.)

The solution is much simpler than the description of what is wrong. You simply swap
the A12 board jumpers to ribbon cable pins 26 and 32. If you're using two drives, you
won't need SELECT/3, so the fact that it will now be low all the time matters not a whit.
What does matter is that Pin 26 will now go up and down as shown below (SELECT/1 and
/2 are held high, and are also unimportant):

Select: Pin Device A Device B Device C Device D
0 26 0 1 0 1
Side 14 0 0 1 1
Drive Side 0 - 1 -

Note that the selection of Device B or D in this configuration, with a single drive, will pro-
duce an error (of the form ‘THIS DRIVE DOESN'T EXIST YET ERROR’). When you insti-
tute a second double-sided drive, all you need to do is invert the SELECT/O line, and
jumper your second drive to suit. For example, you could install a 7404 on the 470
board, and re-jumper, say SELECT/1 to pick up an inverted version of the SELECT/O line:
then you would simply jumper your second drive to pick up SELECT/1, typically by jum-
pering pins 3 and 20 on the Radial Select option pins.

6821 6821
V18 uis
*—cut
\ add add 1K
Jumpers resistor

fig.2

Another, far simpler, solution is, of course, to fit a jumper on your first drive to pick u
the SELECT/3 line (Radial Select pins 7 and 16). However, as you have to modify tF})we Alg
header boz_zrd anyway, it mightas well be ‘correct’. Fig 5 shows the jumpering needed on
the underside of the A12 to use SELECT/O instead of SELECT/3 (Fig.3 also applies). How-

ever you dec'ide to solve the problem, it is as well to be aware that the problem exists, so
that you avoid confusion.

Floppy Connector Board Modified For Dual Sided Drives

1090000900000

DT IELS
00
QQOOOOOOOOOQ2 00000000000,

) - / %/%//\ -

O 0
000 Figd

FRONT SIDE of board
10

-‘—___.__....__-_, _______________

DOOOOOOOO]O[' OOOO]OOO?OOO

OOOOODOOOOOO

L T R |

10 11 12

£ig5 Ak SIDE of board
mod ified. to uce SELECT /0

In passing, it is interesting to consider exactly what OSl intended in the way of drives.
The 470 board appears to have been designed for single-sided drives, while the ribbon
cable seems to suit double-sided equipment (you need no modification to the drive edge-
connector for d/s operation: a single-sided drive, however, needs extensive re-connec-
tion at this point). The A12 header card on the other hand, needs one modification even
for s/s drives (but more for d/s systems). Odd. |As always — Ed.|

11

SWQ;

E Dealer Notes

All busy on the dealer front '

Plenty of things are brewing on the OSI/UK101 dealer front. For starters, some kind of
price war seems to be going on at the Superboard/UK101 end of the market: Comp have
cut their kit price to £149, and are throwing in their new monitor with the kit as part of the
deal; Watford Electronics cut their Superboard price to £149 (the ‘official’ price is sup-
posed to be £159), and have released a 4K monitor at £20; Mutek followed the Superboard
price cut, but include the new Series Il CEGMON in their price of £149; and CTS have
issued a monitor of their own at £27.50. (Talking of monitors, we're obviously biased,
since we wrote CEGMON — but would a user of Watford’s WEMON care to send usare-
view?)

Premier have their board system on the market now, with a whole string of pﬂoe cuts
phoned through at the last minute. OS/UK have signed up anumber of new dealers — sup-
posedly thirty now, RisComp in Princes Risborough and Kram in Leicester among them —
let us know who they are! And what was recently Beaver Systems of Thame has now be-
come Avalon Computers, down the road from us in Street — the new name should go with
a slightly less chaotic service, we hope!

An extension to word-processing
Your editor’s firm Wordsmiths has finally completed its computer-to-typesetter interface

“system — which they call their Anvil, a new way to forge woids into shape! Based on OSl

computers (of course) and using a modified Superboard as a dedicated code-converter
from standard ASCII to the bizarre TTS code used by typesetter systems, it gives OSI users
access to a very powerful ‘printer’ — 200-odd characters persecond, 135 sizes from " to

1”7, and over twenty type styles giving over 3000 characters overall. The system is designed
to be used for complex non-conventional print work, combining data-processing with
type-setting for specialist applications; but the OSI interfaces mean that it can accept any
OSl textor listings, on standard cassette format, 54" or 8" disk, 05-6500)’08—65!.1 orlhe
WP-2, WP-3 and WP-6502 word-processors. Modem links and interfaces for other

puter systems will be available shortly; more details from Tom sraves on Street (ﬂﬂw
45359.

This also means that for the Newsletter we can typeset text, listings or source oodeof
programs direct from tape or disc —saving a lot of work, and reducmg the number of
reintroduced to your work by retypmg' If you want to send a contribution to thé
ter, you'll help us a lot by sending it in these standard OSI formats.

How pot to design a system
No, this time it isn’t OSI. Back in October, Wordsmiths took delivery of a new typesetter
system: the CRTronic, by Linotype (Germany). Very nice, superbly flexible, large charac-
ter set, small, compact and quiet. For the computer buff, twin Z80s for and
background plus an 8x300 dedicated disc-controller; twin 54" double-density floppies
storing 160K each; and a total of 160K of RAM. For the software buff, an intellectual tots-
de-force; the typesetting ‘printer’ works by splitting character shapes into iihes anddmv-
m%u nto photographic paper with a projection CRT. 5
designers somehow forgot that anyone had to use the system. v
— as long as you never make any mistake. It has virtually no error
kind of mistake, and it justs stops. The keyboard is bnlhanﬂyag;s

f’ st of the lethal commands {deSete text, get
checks at all, and many are set up as the shift-values of ¢

Wordsmiths 19a West End, Street, Somerset BA16 0LQ |

. wordsmiths
present their new Anvil

22 typefaces
135 sizes
complete ASCII character set |
all European accents
special characters for maths and others

OSI compatible |

for listings, program runs,
word-processing,
manuals and all text uses

simplified control Ianguage‘

we can accept text
in all standard OSI formats: |
cassette, 5" or 8" disk

0S-65D or OS-65U systems '

WP-2, WP-3 or WP6502 word-processors |

Tel: 0458 45359

Sl e i P idatidtis %Y
E

Dola

oo O0ITWare

117 BLENHEIM ROAD, DEAL , KENT
UK101 and Superboard programs

Dola Software has a library containing stand
alone programs in BASIC and a number of rou-
tines, many in Machine Code, which you can
| build into your own programs. These include
graphics routines, PIA based programs includ-
ing an accurate Frequency Meter, AY-3-8910
music chip subroutines and programs, and a
very fast large digit (7 X 5 pixel) screen display.
; There are also some games, an Astrology com-
‘ putation program and, soon to be released, a
Front Panel Machine Code program to display
registers, program counter etc. and allow mod-
ification of running Machine Code programs.

Some programs will need modification to run
on the Superboard

Send an SAE (large) for the catalogue, and re-
, ceive a free program to whet your appetite.

s ——

o
l
|

\

Avalon Computers

formerly Beaver Systems, Thame

The 6502 system
specialists

Software and hardware for
ACORN
@M@M@

OHI0 SCIERTIFIC

Many systems in stock
at competitive prices

‘Over 200 program titles available

Avalon Computers Street, Somerset BA160LQ

' Telephone: Street (0458) 47007 (24 hr)

shift value of the ‘tab’ key, béi i inpoint. Its hyphenatlon routines, as you
can see in this Newsletter, are'diab ; butbecause of a bug in the System (still noteven
acknowledged, let alone corrected, m(months) the hyphenation can’tbe switched
off without worse errors occurring. §0 on. Stupid design faults making a brilliant sys-
tem almost unusable; a classic, and very expensive, example of how not to design a sys-
tem.

Wordsmiths are replacing it with a mu¢hfaster but much more expensive British system
— aLinotron 202 (now ﬁwcmdmwv em — see above) — so this should be the
last issue of the iced. on it's. worth bearing in mind that design

blunders on this scaiem' AT i J ig-computer industry, and inthis case are in
adesktop system atabout fifteen _,. : poundl That's a hundred times the price
of a Superboard; , ef”m ive OSI machine, and with no-
thing Mw“m may sime failing lndlimitations perhaps; but by com-
parison with' the ' mmmm they do get a remarkable

amount right!

A few “User Notes’ fromhllen :

Mutek rang up to say that a few UK101 usenhldhodproblemswm the BASIC 3 chip —
Comp had played about with the BASIC/monitor link to handle rusour just enough to stop

the replacement BASIC 3 working on wmm problem does not arise un-
der CEGMON, as the delete is handled w m s¢reen-handler, without needing a mon-

itor patch. Alsoanohefranoneofourumm ”mfoundd'satCEGMQN
gives a rubout problem (again — OSI’s blasted itine!) on his UK101; it turns out
thathnsmachmewasoneof&leﬁmhundredf!m&!m l.ﬂ)lwmmbout rather
than 95, like all OSl and later Comp systems. If you hay of these systems, and want
CEGMON, say Mutek, let them know so that a ‘special’ mu the PROM can be
blown.

A note from lan Rlchardsm of Northern Micro on his &K+15I(upulhn unit: The first
20 units were sent out with inadequate paperwork. He says he has rectified the mistakes
and redone the documentation, and most of those twenty have been contacted. He still
needs, however, to get in touch with Messrs. Adamson, Ball, Daviés, S¢ales and Dr Pep-
piat— if any are members, please get in touch with him on 0484 89 2062.

The indefatigable David Hardman of Jayman Electro Devices (see their ad below) has
come up with a particularly useful-looking board: a Centronics parallel interface for any
OSl-based system, that pretends to be the system’s ACIA — so no software changes are re-
quired. He says that the ACIA and lel ports are swapped in and out with a POKE, so

" the ACIA is always available. It’s still in the pre-production phase, with afe\vmm

being added, but should cost around £25 when released. He's also arranged a :
price on a complete 8300 Comet 40/80/132 column printer (rrp £440, User Group
and on the same printer mechanism with case and Centronics driver boam tﬂ, ‘

» ‘ ’

SMALL ADS

lware Prograph Board for Superboard and UK101. Plugs in mgive 13& w
deﬁnc aracters + ASClI standard; switchable to give ongmal sety s&a‘bm
Kit £39.50 + VAT, ready-built and tested £47.00 +VAT.

Includes demo tape and instructions.

Software cassettes for C1E and UK101:
Patience, Mancala, Othello: — 8K £2.00 each.
Invaders, Fruit Machine, Solitaire: — £2.00
H;araw‘m:— Resistors 1p; DIL sockets (pins/
25. :

Hardware Add-ons

- from Northern Micro

48x32 video mhancemcnt

A must forall isérs — gives a better d:spl.\y than the Pet, Apple, Sharp or Trash-80!

For both Superboard 11 and Compukit (state which).

Gives atruic 4832 display at 50Hz.

Doubles video memory and makes the characters the correct shape

Available with cither a software patch to relocate the screen’s vectors or with a specnal
CECGMON which does this in firmware.

Comes with all components and full and easy to follow instructions.

Requires soldering ability, or you can use our fitting service (72 hour turn-round).

Display Kit + instructions £15, 48% 32 CLGMON £29.50, or both only £42, fitting £12.

Low Cost Memory Expansion Board for UK101 and all Superboards

3K RAM and 4K, 8K or 16K of EPROM.
Ylugs into 40-pin Expansion Socket.
ally static — uses fast 2114 L 300ns RAM which allows 2MHz operation.

B i%rv high quality PCB — dwub}e sided with plated thro” holes, silk screen layout and

solder resist.
Fully buffered address Imo«. and all memory is bank selectable in8K blocks
All decoding done ‘on board”. .

Kitcomprises:— 40 meiL plug/connector, PCB, 4K of 21141 300ns RAM, 7 decoding and
buffering 1Cs, various 1C sockets and capacitors, full instructions.

Price; Kit £42.95, mﬂ built, tested and guaranteed £49.95, bare PCB and instr. £17.50.
(N.B. A“Foolkit ET will be released shortly to fit on this board, costing less than £20).

We offer a full back-up service on all our products and kits and will repair or maintain any
buperhmrd or UKI0T at very reasonable rates.

"ngrams For All 48 x 32 Boards and Standard Superboards

Clress 1.9 Play against your computer. 2 levels and speeds of play (55 secs max). Choice of
computer playing several different openings. High speed load. £8.00

Draughts — Super BASIC program, difficult to beat, nice display. £3.50

Pinball — Great simulation of a Pinball machine (48x32 only). £3.00

Dadgens — Another greatarcade type game, you must try to beat the computer’s car driven by a
crazy Italian (also only 48x32). £3.00

Golf — For one to four players. 18 hole course, requires skill and judgment but without that
nasty walking. £4.00

Air Attack — Bomb New York flat and land your plane — very difficult. £2.50

Space hivaders — Very fast machine code program — eight skill levels — as seen in pubs, clubs,
schools, canteens, chip shops cte. (not 48x32). £4.50

Assembler Lditor A must for the serious machine-code programmer. £24.00

Compare our prices — we don’t think they can be beaten — others are twice the price.

NORTHERN MICRO

29 Moorcroft Park, New Mill, Huddersﬁeld Tel: Holmfirth (048 489) 2062

SAE for full catalogue:

Haven Hardware 4 Asby Road Asby, Workmgton Cumbria CAl 4 4RR %
Supercase ?or Superbotfds byiayman Electro Devices. A twi ot inted hel gauge
aluminium case, similar to the C1 Series | case but with hmgedpt:p%:wen 1W4wv;ldn *®
51/" high by 17” deep. Suitable for Superboard, UK101 and others; arate key hoard
touts for Superboard, ‘UK101, or solid blank for ‘homebrew’ systems. Thie ¢

is mounted on a rigid inclined support plate punched for two 3A regula
room for 610 board and other add-ons below. Backplate punched with finger-
lation slots and holes for coax socket, 3 DIN sockets, fuse holder, mains switch;
clamp; also removable 8"x 34" ptate for dritling your own hol’es' Undiemde e

ion and cables.. ; bL :

front with six 2'/4"x ¥s" holes for yentilati
Case only £28.00; ‘mains Kit' with' switch, fuse-holder etc £2.50 +26p per metre qa

p&p on case or case/mains kit £1 ,SO, Im. / 60p (all prices excluding VAT).

Jayman Electro Devices, 85 Lees m, Lancs; tel. 061-652 1604. 7
STOP! -

Now read this:

Is writing software in EPROMS expensive? Well it depends upon how you go around do-

ing it!

Forget about the programming services that cost £2 to £3 per K (kilobyte). Forget also

the £100-pius Eprom programmers! Because, here we haye an EPROM programmer

which plugs into UK101, Superboard etc.)T expansion sochel, fesides at $F1Fx and costs
.. wait for it ONLY 533! (no joke!!!).

|f you have a parallel I/O port you can program your EPR()M! for just £28 (uses 12 IIO
lines, Gnd & 5+5).

Alternatively givé your Micro an 1/O port (for that relay, Lights, Printer, moeors etc.), and
an EPROM programmer for ONLY £43 (the EPROM programmer board p‘uss into the 11O
board when required).
What can the programmer do? Well how’s this:
(1) Test BLANK (erased), EPROMS.
(2)y Read EPROM s into memory.
(3) Program EPROMs. ;
(4) Copy EPROMSs (as many as you want!).
(5) Verify EPROMs.

- FULL software provided with the hardware (not just examples!), well documerﬁﬁ am!

completely ASSEMBLED on PCB (not veroboard!).

“Now you can fix that BASIC 3, BASIC 1, put EXMON in EPROM, write anothar WM

monitor, add new commands / language etc.

ALSO available: Four slot J1 bus board £20; Light pen £14; Digital to Analogue corwenw
£23; Analogue to Digital converter £25; Programmable sound generator £32; W
itor board £8; Dual Character set board £9.50; 8K RAM plus 8/16K EPROM Gust

plugir >emory chips) £60.30.

Infor. n Sheet. .
How'to add at least 8K RAM plus 8K EPROM on board withoqt !

ALL THIS AVAILABLE NOW (not next week, month...). All orders Fi

L

TOOLKIT &5

* Add nine new command words to your UKIO0T

in time-saving, RAM-saving EPROM

VIEW - ook at program on cassette without
affecting memory contents

LIST* - controlled LIST - }ist program om VDU,
1 to 99 lines at a time

DELETE - delete specified blocks of program
Fl1iD* = Search and nighlight any chosen string
in a basic listing

AUTO = aytomatic new line mnbers lmar

RENUM % a COMPLETE renunbér routine which also

‘compacts program as it renumbers. Contains full
€rror messages

TRACE - featuring TRON & TROFF. Displays current
line number being executed. Transparent to
screen graphics

MONT - direct jump td machine am without
altering stack or variables.

ERROR MESSAGES - Microsoft error messages. shown
covrectly. Toolkit also gemerates its own error
messages .

IBILITY
TOOLKIT is.available in twe m\m
A for UKIO1 1/2 or m
B for Dém). 80 ding
to CEGMON dogs invelve dmmng “
TOOLKIT is supplied in 2 x 2716 EPROMS for direct
insertion into your or one of our eprom boards.
It is addressed to 8000 (hex).
For £3.50 extra, we can blow TOOLKIT to your
specified address.
PRICE: £87.95 inc VAT (+£1.40 pdp and insurance)
AVAILABILITY ON TOOLKIT IS IMMEDIATE

DEVELOPED BY NONSUCH SOFTWARE FOR SOLE
B!S‘FHWHON BY PREMIER PUBLICATIONS

| mooofirnegmtedenhancemernsnowavatlable
PROGRAMMABLE CHARACTER GENERATOR

128 self-designed characters available

sets can be stored on tape or disk

powerful demo software and character sets suwh(d
plug-in device - U hardware mods needed
available as kit or ready-built

R

Uesigned in the UK to Premier's usual nigh standards, the Programmetle
Character Gemerator will revolutisnise your graphics capabilities.
With the PCG, there are millions of possible mew characters - tne only
Jimit is yowr imagination! Your new character sets can be printed or
poked to the screen in exactly the same way as ”Ur in-bml(set.

They can alco be stored on tape for future retrieve

The PCG uses none of your user RAM and tne origipal cnaracter set is
stil) available for use.

Premier Puolications will be releasing My- jortive suftware for
this superv product
PRICE: KIT - €P.0.Ainc VAT (#2 php ‘and insurance)

BUILT - €P.O.A.inc VAT (+£2 pép and insurance)

TOTAL EXPANSION SYSTEM (TES)

A ﬂmy'inugnm rm of add-on Wre 5 available, &s kits or
fully built

HERBOARD « takes § cards, dupTicating J1 socket on main board.
containg, 6 x 40 pin sock
inchistve - with full PSU, less tfansformer
EPRiOM - takes 4 x 2716 €PROMS. Commects direct to J1 or our

£29.95 nclusive £44.98 Incivaive + TO0LKIT
8K RAM CARD - takes ¥6 x 2114, Connects to J1 or our Motherboard.
inelusive - no RAM supplied
inclusive - with 4K 300ns or faster)
£61.95 inclusive - with 8K RAM (300ns or faster)

Built and tested kits are £10 extra per card. Post & Package on nardware
IMMEUIATE AVAILABILITY ON ALL THE ABOVE CARDS

is £1.60 per card.

Planned additions to the TES range include:

l PIUSUW Generator Bosrd STOP PRESS ...BASICS —
M;\ Controller 17 new BASIC words — send for details
lu Time Clock
m Screen x 64) - suﬁu&re selectable to wany
5%& forpats, % N - NO hardware

for details) th mmm[nmﬁe alse under development .
Jraughts - Life - Kuiﬂun Speedway -
Cribbage - Adventure - and many wore, inciu«ﬂnc Word Processor

- superior FULL editing mtor for UKI01 and SUPERBOARD. £33.92

Extended Monitor in EPROM - £21.95. RAM - 2114 (300ns or faster): 4K £16.95 inc; 8K £33.50 inc; 16K £64.95 inc.

Please add £1.40 post, packing and insurance for the above items.

ﬁnumumnmanmwﬁr ur computer - phone or write today

extends effective screen resolution from 48 x 16 to 384 » 128 (.r)J},

.

 STOP PRESS

Disc patch for CCGMON -

The main limitation.of Justin Johnson’s CEGMON-65D linker is that it only works
with BASIC; separate linkers are needed for ExMon and (particularly) the
Assembler. Steve Hanlan of Bgaver (mow Avalon Computers) has tackled a
different approach, working within 65D itself. We've only space for a brief
comment here; fuller detmls next issue.

The idea is that, just as the rd routine swaps the locations $0213-$0216 in
and out to avoid cor-rupﬁﬁa B 1C or the Assembler, the video routine can swap
the entire 2 stores in and out. Since the CEGMON video routines are used
instead of 65D's, the 65D video routine space is used as the swap r store. This
does make video handling significantly slower — about 700 cycles longer per
character output to the screen; but it is within the operating system rather than
BASIC, so it is independant of ‘the software running at the time.

Known difficulties are with OSI’s backspace (again!) which is easy to patch, and
with indirect files. More details next issue.

Disk handling in 48-character mode on Series 2

We've hit against a strange problem in 65D on the new Series 2 Superboard. It
loads from disk happily enough in 48-character,modq bt it hangs im

any attempt is made to PUT or SAVE to disk:" appears to scramble the
track-header. We can’t work this one out — any ideéas, anyone?

i

e

2 OSI Joysticks

Great pi'oducts from Mutek

BASIC1 &3

Two replacement PROMs for all OSI and UK101 BASIC-in-ROM systems:

BASIC 1 removes the input ‘mask’ to allow direct entry of graphics from either keyboard or
cassette; corrects error-messages to two-letter codes; and replaces the unused ‘NULL’
command with a machine-code ‘CALL" instruction from BASIC.

BASIC 3 contains the patch for the string-handling ‘garbage-collector’ bug, as described by
the OSI/UK User Group.

Special price to User Group members: £12.00+VAT
“for the pair, including notes and installation instructions.
To help us maintain this low price, please send a stamped addressed ‘Jiffy-Bag’ envelope with your order.

N

Full four-axis plus action-key. Ask for details — our price £20,00+VAT per pair

~ 8K memory/PIA board

A professional-quality expansion board for all Superboard and UK101 systems.
* 8K of reliable static memory (2114L3) %
* Two-way, 16-line parallel port (6821 PIA) *
* Fully buffered — boards can be linked *

Assembled, tested and guaranteed: £65.00+VAT
Ribbon-cable and plugs: add £8.00+ VAT

Serial to parallel converter

A converter for all systems, with links to allow for differing word lengths and formats.
300-9600 baud RS232 serial input — Centronics-compatible parallel output.

Price including case, cables and : £40.00+VAT

Mutek Quarry Hill, Box, Wilts. Tel: Bath (0225) 743289

The BASICs of machine-code
Part 4: Binary juggling

Tom Graves

Last issue we dealt with the use of the disassembler, and judging from the comments peo-
ple have sent in — and their suggested modifications to the rather limited program of last
time — this has at least been useful. But we have had many comments from others that
they are still having difficulty with BASIC, let alone machine-code! So the discussion on
‘hooks into BASIC” — adding your own commands to the interpreter — will be postponed
till next issue; for this part of the series we will combine the general theme of machine-
code with the problems of working direct to screen memory on BASIC, by using a
number-base conversion routine as a demonstrator for both.

The program that follows was developed (or rather knocked up over a bleary-eyed ev-
ening) by Steve Hanlan of Beaver Systems, from a very rough program of my own (which
George Chkiantz insists on referring to as 'Binary Beans’, for some reason known only by
himself!). The original program showed a travelling cursor under a row of boxes repre-
senting the individual bits of a byte. At the cursor, to ‘1" or, if already ‘17, to ‘0’. The resul-
tant value was shown below in decimal and hexadecimal. Here Steve has adapted the
routine so that the values can be changed in any of the number bases, showing the effect
on the other number bases.

The other difference is that the sceen itself is used as the memory — the values are not
stored in BASIC variables, but actually as their ASCII values on the screen — a principle
which is particularly suitable for many real-time and graphic games in BASIC. This does
make the routine rather slower than if BASIC variables had been used, but this is accepta-
ble in a demonstration program!

10 FOR Q=1 TO 30: PRINT: NEXT

20 POKE 56900,0

30 DIM B(7)

40 K=57088: L=32: IF PEEK(K)<128 THEN L=64: S=8

This section does a general set-up: 10 clears the screen, 20 defines the C2 and C4 screen-
format as 3232 (ignored on C1/Superboards); 30 sets up the array for the binary value
store used later; and 40 adjusts the program for different standard machines — L is the
nominal width of the screen (32 on standard C1 series, 64 on C2/C4 series), and S is the
distance on from the left margin. The routine checks this by looking at the keyboard port,
which returns a value >127 on a standard Superboard or C1; on Series 2 Superboards
(the latest version) and on modified systems like the C1E L may need to be set to 64 —
check, because this test is used later in the program.

50 PT=53446+L*6: PRINT SPC(S) "Binary” SPC(4) "Dec” SPC(2) "Hex"
55 For Q=1 TO 11: PRINT: NEXT

60 PRINT "To move the cursor use: PRINT: PRINT SPC(4) “the SHIFT keys”
70 PRINT: PRINT SPC(1) “To increment a digit”

8”7 "RINT: PRINT SPC(3) "use the space bar”

AN QNT: PRINT SPC(4) "To exit use 'p"”

These obviously print up the instructions. I've used SPC(n) statements here because the
typesetter can’t easily show the exact number of spaces used, and here they do happen to
be important; they can all be replaced by simple spaces except for the SPC(S) in 50,
which places the labels in the correct positions for the different screen formats.

100 FOR Q=PT+1 TO PT+8: POKE Q,217: POKE Q+2*L,215: POKE Q+L,48:
NEXT

12

110 FOR4Q=PT+12 TOPT+14: POKE Q,217: POKE Q+2*L,215: POKE Q+L,48:
NEXT

120 FOR Q=PT+18 TO PT+19: POKE Q,217: POKE Q+2*L,215: POKE Q+L,48: .
NEXT
130 CU=PT+3*L+8: POKE CU,94

These set up the number boxes and their contents — first the binary, then decimal, then
hexadecimal. Note that the values are POKEd direct into memory, in defined positions:
this allows us to use them to store the actual totals in each case, as memory. The three
lines 100 to 120 place first the top-line of each section, then the bottom line of the boxes
two screen lines down, then the ‘0’ within each box; the actual placement could have
been done more neatly with a GOSUB, but then this was written at one o’clock in the
morning! Line 130 defines the cursor position, one screen line below the base of the
boxes, and prints it direct to screen as an * T symbol.

140 RO=254: R1=253: IF PEEK (K)<127 THEN RO=1:R1=2

150 POKE 530,1

160 POKE K,RO: C=PEEK(K): IF C<128 THEN C=255-C ‘

These get the key values — RO and R1 refer to row-0 and row-1 of keyboard respectively .

The shuffling of values in 140 and 160 allows a direct comparison regardless of which ma-
chine — and therefore keyboard type — is being used. The POKE 530, 1 in 150 disables
the “control-C’ escape — you can only exit the program by pressing ‘P’ (dealt with in lines
190-200) or, of course, BREAK.

170 IF C=250 THEN GOSUB 260

180 IF C=252 THEN GOSUB 290

These pick out left-shift and right-shift respectively.

190 POKE K,R1: C=PEEK(K): IF C<128 THEN C=255-C

200 IF C=253 THEN FOR Q=1TO 30: PRINT: NEXT: END
This ends the program on finding the ‘P’ key pressed.

210 1F C<>239 THEN FOR P=1 TO 150: NEXT: GOTO 160

220 ST=PT+3*L

230 IF (CU>ST) AND (CU-9<ST THEN 320

240 IF (CU>ST+11) AND (CU<ST+15) THEN 490

250 IF (CU>ST+17) AND (CU<ST+20) THEN 550

Line 210 checks for the ‘space’ bar; if not, then the scan loop starts again after a short de- .
lay, else the space bar must have been pressed to call for a value change. Lines 220 to 250
check the position of the travelling cursor: ST is the beginning of the cursor line. If the 230
check succeeds, the cursor is below the binary set, and the decimal and hex must also be
changed (in 320 on); if 240 succeeds, the cursor is under decimal, and calls for changes to
binary and hex; if 250, binary and decimal must be changed.

260 POKE CU,32: CU=CU-1: IF CU=PT+3*L THEN CU=CU+19
270 IF PEEK (CU-*L(=32 THEN 260

280 POKE CU,94: RETURN

290 POKE CU,32: CU=CU+1: IF CU=PT+3*L+20 THEN CU=CU-20
300 IF PEEK (CU-3*L)=32 THEN 290

310 POKE CU,94: RETURN

These are the cursor-shift subroutines called by left-shift (170) and right-shift (180): the ‘

cursor is blanked, and its position is decremented or incremented respectively; if it over-
shoots either end, the cursor ‘wraps round’ to the other end (CU=CU+19, CU=CU-20
— the difference is because CU runs from 0 to 191). If the point above the cursor is a space

13

__in other words is between the stores — the routine loop round until a digit is found, so
that the cursor effectively jumps between the stores.
320 CH=PEEK(CU-2*L): CH=CH+1: IF CH=50 THEN CH=48
330 POKE CU-2*L,CH: N=0 B
340 FOR Q=0 TO 7: PEEK(PT+L+8-Q): IF X=49 THEN N=N+21Q
350 NEXT N
i i i titc lue of the digit above the
i the binary section of the display: it change,s the val 8
IB:(?ra(réchirlsL) converring it back to ‘0’ if itis already 1 (320). 340 and 350 scan the bi
“ti l ing i | value stored in N.
nary section, converting it to a tota B
360 N(2)=INT(N/100): N=N-N(2)*100: N(1)=INT(N/10): N(O)=N-N(1)/10
370 FOR Q=0 TO 2: POKE PT+L+14-Q,N(Q)+48: NEXT
380 IFW=1 THEN RETURN _ et decimal
intout the decimal part of the display, converting the total in N into ecim
(TinhgeltS;3 Tr:g F(’)CU)KEing their ASCII values direct to the screen by adding 48 (chefk th;}‘(l)v:t
the gr’aphics character table in your manual if you're not sure how this works). Line
lows this to be used as a ‘sometimes subroutine’, called by line 610 later.
390 N=0: FOR Q=0 TO 3: X=PEEK(PT+8+L-Q): IF X=49 THEN N=N+21Q
400 NEXT
410 IFN<10 THEN CH=N+48
420 IFN>=10 THEN CH=N+55
- T+L+19,CH B
2:’;8 PNZ%E II::’OR Q=4 TO 7: X=PEEK(PT+8+L-Q): IF X=49 THEN N=N+2 1 (Q-4
450 NEXT: IFN<10 THEN CH=N+48
460 IFN>=10 THEN CH=N+55
470 POKE PT+L+18,CH
480 GOTO 160)
i i igi ing the respective low-
These convert the binary value to two hexadecimal dlglt_s,lb.y scanning .
er ftfiet}s 0to 3, counting from the right) and upper four-bit ‘nibbles’: 390-430 d(?al w:thtl’;e
lower nibble, 440-470 deal with the upper, and 480 returns to the scanning loop. f018
the hexadecimal-to-ASCII adjustment in 410-420 and 450-460, converting \(aluesg (
and above to the letters A-F; again, check with the character-graphics chart if you don’t
understand how this works.
490 CH=PEEK(CU-2*L): CH=CH+1:IF CH0=58 THEN CH=48
00 POKE CU-2*L,CH: ST=PT+L+12: N=
210 FOR P=0 TO 2: CH=PEEK(ST+P)—48: N=N+CH*10 1 (2-P))
520 NEXT P: IF N>=256 THEN CH=PEEK(CU-2*L)-1: GOTO 500 . ’
i ine j i i i i f the display. Here
his routine jumps to here if the cursor is under the decimal section o _
tThelsvraollL‘lel is {ncrgmented rather than simply flipped (because decimal has ten possnble'
values rather than two!); note also the check in 520 to make sure that the maximum qutq
value of 255 cannot be exceeded. If if has, the routine loops back to decrement the digit
again; i the routine continues.
’ 530 jOR Q=0 TO 7: BQ)=N-INT(N/2)*2: N=INT(N/2): POKE PT+L+8-

,B(Q)+48
@ 540 NEXT: GOTO 390

The binary values are now dealt with; the routine then jumps to 390, to change the dis-
played hexadecimal value, and thence back to the scanning loop.

550 CH=PEEK(CU-2*L): CH=CH+1: IF CH=71 THEN CH=48

560 IF CH=58 THEN CH=65

The routine jumps to here if the cursor is under the hex section. Again, the digit is incre-
mented; note the checks to handle the ASCII jJump from F to 0 (550) and 9 to A (560).

570 POKE CU-2*L,CH: ST=PT+L=18: N=0

580 CH=PEEK(ST): IF CH>65 THEN CH=CH-7

590 N=N+(CH-48)*16

600 CH=PEEK(ST+1): IF CH>=65 THEN CH=CH-7

610 N=N+CH-48: T=N: W=1: GOSUB 360: W=0: N=T: GOTO 530
Here the routine calculates the new total value; again, note the checks needed in the AS-
Cll to hex conversions (IF CH>=65 THEN CH=CH-7). 610 calls the ‘sometimes subrou-
tine’ (360-380) to print up the decimal value, saving the N total in a temporary store T; it
then exits by printing up the binary value.

The whole program is somewhat slow, and could do with some general tidying! But it is
interesting to watch how changing a value — particularly a decimal one — causes a
change to ripple through the other number-base displays. Steve is intending, incidentally,
to expand this rough program into a full machine-code tutor, showing the effects of arith-
metic and shift operations on the values, the ‘carry’ bit and the status flags; so we’'ll pub-
lish the relevant amendments in later parts of this series.

We have wandered somewhat from our original intention in this series of describing ma-
chine-code concepts in terms of BASIC! But we did feel that understanding some of the
concepts needed some background as to what machine-code actually does, from the ma-
chine’s point of view — hence the disassembler of last issue, and the BASIC program of
this. Next issue we'll return to this series’ original theme, and develop a BASIC description
of machine code.

The main difficulty in explaining machine-code via BASIC is in its very extensive use of
‘flags’: the status register’s flag-bits are set and cleared with almost every operation, some-
thing that would not normally be done without extensive subroutines. We'll discuss ways
round this difficulty in the next issue.

Elsewhere next issue we’ll deal with extensions to BASIC itself, as promised. A couple
of members have already sent in suggestions, complete with the code to implement them
for either BASIC-in-ROM or in 65D; any further suggestions would be most welcome!

L) fowe 539,24
GOSUB

Lo IF AyZ THenv R
k20 Goq
%

15

8-inch floppies for the Superboard
David Kaye

. Expanding my Superboard to a disk system would have entailed the adding of a 610 ex-

pansion board along with a standard 5'4in minifloppy drive to make a standard configura-
tion. However, as the 610 board and minifloppy drive are not cheap, and there was a pos-
sibility of an 8in drive being acquired, I decided to attempt to attach a full-size floppy disk
to my system.

| obtained a copy of the Howard Sams C1 manual, which showed that the circuitry used
open-collector techniques for driving the disk unit. This suited my DRI Model 74 (Orbis
74) unit; however, the labels for the |3 connections on the 610 board are not given on the
diagram! [J3 connects the 610 board to the drive header cable. — Ed. |

I contacted Mutek to obtain a 610 board, and they kindly provided information on the
disk-driver circuitry for the C3 and C4. The C 3 diagrams not only provide the labels for the
1/0) lines but also the changes required to drive 8in disks. As far as the disk driver itself is
concerned, the circuit is identical, except that R20, which is connectd from the +5v line
to the RxData trimmer R19 and thus to U70 pin 14 via a .001 capacitor C39, must be
changed from its current 18K ohms value to 4K7 ohms to suit 8in drives. The pulse width
may then be adjusted (with R19) to 2.5 microseconds via the procedure given in the Sams
manual.

This change is all that is required to read 8in disks. However, as the data-clock rate is
250kHz for 8in and 125kHz for 5'4in, the TxCLK line needs to be moved from U12 pin 8
to U12 pin 9. This can be easily done on the solder pads provided, firstly cutting the print-
ed link-

Having obtained the 610 board, I increased the total system memory to 24K (32K is pos-
sible, including the Superboard’s own memory) and obtained a header card to plug into
J3. The header card is designed, of course, to connect up to two minifloppy drives to the
system. It does not contain any active components, as it merely acts as a connecting
board, but it showed that a number of I/0 lines were permanently set as shown in this ta-
ble:

/3 On header card Mnemonic

4 is tied low (active) Reset file unsafe
20 is tied low (active) Drive 2 ready
21 is not connected Sector
22 is not connected File unsafe
24 is tied low (active) Drive 1 ready

The header card is used only as a wiring platform for the 50-way ribbon cable I used on my
8in drive (see figure 1). | have, however, added DIL switches on the drive to enable the
above lines to be set.

The folle j table shows the lines to the 50-way connector on the Orbis drive:

al PininJ1 Disk I/F
Reserved 1
Return 2
Key 3
Key 4

Header Card ’ Signal Pinin 1 Disk I/F

Read data 5 —
‘ Return 6 +
T3 Ready 7 -
A B Return 8
- — O LoAd Hepd RO 22 Sector* 9 -
~ ol O SeLeCT Low CURRENT 6 Remm 10
Index 11 -
- o O seLecT prive 4 3 Return 12
~ <4 O Reser FiLe uvsAFE N Write data 13 -
— Return 14
Ln O ¢rep Head b Erase gate 15 —
i} < O O STEP DIRECTOV uwd gy ™M Return 16
| g h Write gate 17 —
| ™ O ERASE EvpBLE e S o . Retur s
Y — ® O WRITE ENABLE 1R é File unsafe 19 N
3 e~ § Return 20
g ~ ¥ © WRITe paTA w4 . = File protect* 21 —
~ 2 O SePaRATED CLOCK £ = Return 22
- = Os o B 3 Track 00 23 —+24v 50
— EPARATED DATA 5 Return 24
-~ 0 4y DE,; & Unsafe reset 25 —
9 Y Return 26
= 'E Low current 27 —
- @ 0 oV o Return 28
& 2 Step 29 -
3 50
= 0 +5 Return 30
0o NC gg In (direction) 31 -
Return 32
‘ ® o N S
i — C - 2 Load head 33 «
-~ ™ O INDex o av Return 34
~ D 6 S€lecTdRve 2 A g ,ﬂ. Sep clock 35 N
Y o YV Return 36
i “ T O wRive PRoTECT ie i § Sep data* 37 -
: o
[- § O DRIVe 2RefDY Eg 20 D @& Return 38
t —_ F 3 Reserved 39
R 4 O sector S B L Return 40
:“ O FILe UNSRFe é - +5 volts 41
o +5 volts 42
N O TRAK ¢4 e 7 12 volts 43
/c':s- O DRNE 1 ReAdy E 26 volts 44
+24 volts return 45
+24 volts return 46
i 12/50 +24 volts return 47
. +24 volts 48 ‘
+24 volts 49

18

CEGMON Notes

Justin Johnson’s disk linker
A number of points have arisen from this — not least being the surprisingly large number
of disk systems around!

For starters, there is a bug in the listing given last issue. Delete line 120 (120 DATA
4353) — this should not be used, as the linker crashes on DIM statements if it is used.

Rather more important, you must keep at least one disk with the original unlinked oper-
ating-system — or else you won't be able to copy disks or work on track Zero! The CEG-
MON/SYNMON pointers are swapped into Page 2, from $0200 upwards, and are used by
all input/output calls, including those from the operating system. The 65D track-zero/
copy utility, however, occupies the same space — CALL 0200=13,1 (CALL 0200= 01,2
on 8" systems) — and neatly overwrites the lot, crashing all input/output and plenty more
besides! As mentioned above, keep at least one master copy of 65D unlinked.

The routine as published applies to Justin’s own homebrew display; the DATA for the
page-2 locations has to be changed for different machines. There was a note to this effect
at the tag-end of the Dealer Notes section of last issue; but in case you missed it, here it is
again: after the DATA 8 in line 1030 the values are machine-specific, and should be co-
pied from locations 64434-64462 ($FBB2-$FBCE) on your own version of CEGMON.
(The locations are different — 64464-64490, $FBDO-$FBEA — on Superboard Series 2/
Superboard Il CEGMONS: see below). Line 1070 seems to be redundant, in that the
values of that line (stored in $0235-$0240) are not actually used by CEGMON.

Because of differences in the assembly, the linker for the new CEGMON version for Ser-
ies 2 Superboards is rather different. Steve Hanlan of Beaver Systems rewrote the linker for
us:

10 X=PEEK(10950):POKE 8993,X:POKE 8994, X

15 POKE 741,76: POKE 750,78

20 POKE 2073,173: POKE 2893,55: POKE 2894,8

25 L=PEEK(133): POKE 133,L—1: REM reserve top page of memory
30 POKE 8960,L-1: FOR J=712TO 767: A=PEEK())

35 POKE J+(L-2)*256,A :NEXT :REM swap look-up to top page

40 READ N: IF N=999 Then J=511: GOTO 60

50 POKE N+2,L: GOTO 40 REM insert links into BASIC

60 READ N: IF N=-1 THEN 80

70)=j+1: POKE J,N: GOTO 60: REM swap CEGMON pointers into page 2
80 POKE 1419,2556: POKE 11430,255

85 POKE 8979,54: POKE 8980,248: REM series 2 screen handler
90 POKE 9522,209: POKE 9523,250: REM series 2 input

95 POKE 1382,5: PRINT CHR$(26); X

100 PRINT "CEGMON linked System open”: NEW

110 DATA 2037,2041,8908,999

120 DATA 0,32,10,0,1,0,0,8,43,11,35

140 DATA 10,10,0: REM SYNMON:-type pointers

150 DATA 180,250,155,255,57,255,112,254,123,254: REM vectors
160 DATA 47,138,208,138,211: REM screen table values

170 DATA 189,138,208,157,138,211,202,96

180 DATA 0,64,138,208,-1

CEGMON for Series 2 Superboard

After a mammoth re-assembly, CEGMON for Series 2 has finally arrived. There was just
one byte free in the original CEGMON — we had to find just over sixty for the new rou-
tines! The screen-format swap is now supported by CHR$(6) (or cTrL-F if BASIC’s masking

19

¢

(L

‘:

is bypassed); you can also ‘freeze’ listing on the screen by holding down the ‘ctr” and ‘re-
reaT” at the same time. The only feature dropped is the former User jump in the machine-
code monitor. An awkward point for some users — particularly software houses — is that
almost all of the routines have been moved. Not surprising, really — ‘inventing’ more
than forty bytes in a major system demands a fair bit of reshuffling!

CEGMON and Intamon
CTS in Lancashire are distributing a new monitor for the Series 2 Superboard, written by a
software house by the name of Intasoft. It adds a new range of BASIC commands (mostly
for screen-handling, such as .CLS), a twin-cursor screen-editor, and a programmable
screen-handler; it does, however, have only limited machine-code facilities. Sounds fa-
miliar? Yes, you're right. On our estimate, just under 20% of the code is original — ex-
changing CEGMON’s machine-code monitor for one of Micro’s ‘hooks’ into BASIC. The
rest is mostly CEGMON original — just over 55% — including the screen-handler (un-
changed), the editor (unchanged except for the actual key values — awkwardly using the
‘repeat’ key), the CEGMON keyboard unscramble and, amusingly, the special patch to
allow CEGMON:Ss to run on UK10Ts (Intamon, however, is not designed to run on the
UK101s...). 15% of the code has even been copied byte-for-byte, let alone line-for-line
— all of it CEGMON additions rather than OSI original. We are not exactly happy about
this; neither, we are glad to say, is Pete Fawthrop of CTS, who was under the impression
that Intasoft were producing an entirely new monitor with features like PRINT USING —
which itdoesn’t have. Pete Fawthrop has a reputation for service and straight dealing, and
we gather that some kind of licensing deal is being arranged.

Annoying though this is for us, it does mean that Intamon is almost exactly software-
compatible with CEGMON. The notes in this column will, in almost all cases, apply to
systems running under Intamon.

CEGMON-D

The trials and tribulations of CEGMON-D continue! As expected, OSI’s software for disc
systems is almost perfectly incompatible with itself — 65D, for example, has two separate
backspace routines and three entirely different methods of printing messages; while 65U,
a very impressive operating system, continues to confuse us, because it consists of a maze
of machine-code patches into the already heavily-patched code of 65D BASIC. The CEG-
MON-D package will eventually consist of the PROM together with a small board carry-
ing the extra circuitry for its own independent RAM. Prototypes are available, butthe long
job of weeding out OSI’s incompatibilities will evidently continue for a while yet.

Dath Fiern

3Kk 2.2%¢s #-!i q-¥¢ \
A=2BNC>D A3 3.82%650 ¢.0001:

f3lectsgl 3 35 Bx qéuy
066 (oome st Hee Soweyy?) 1080
L :3'!1;7?5?,!&.3!3 50 6¥01 81 |

20

Utilisation of unused video RAM on the C1E

Chris Forecast

The Mutek 48 by 32 display conversion of the C1P requires the implementation of 2K vi- ‘

deo RAM. However it is obvious that a 48 by 32 display only requires 1536 bytes of RAM.
So it is clear that 512 bytes of the video RAM remain unused.

If we look at the video memory map of the 48 by 32 format display we can see that the
unused memory occupies a block “to the right of the screen”.

Unfortunately this memory does not occupy consecutive locations but 32 blocks of 16
bytes at 64 byte intervals.

A very useful way of utilizing this memory is to define a function FNA(X);

DEF FNA(X)=53295+X+48*INT((X-1)/16)
This gives us a function such that FNA(1) is the first location of the unused RAM and

FNA(512) is the last location. So we have a way of consecutively labelling the spare.

RAM. This can be very useful where we need to use a large array containing integers (0 to
255), since we have an array of up to 512 elements which may be set up by POKE state-
ments and read by PEEK statements.

Hence instead of saying something like A(4)=62 we use POKE(FNA(4)),62 and like-
wise an expression like P=A(4) becomes P=PEEK(FNA(4)). Whilst this method is only
useful for an array of dimension 511 or less, containing integers from 0 to 255, it still pro-
vides a tremendous memory saving when used.

Now to the disadvantages. Because the spare RAM is video RAM, scrolling must be
avoided, as this would rearrange the contents of the proposed array. This means that the
system is only really suitable for those machines using CEGMON, where video RAM
areas outside the current ‘window’ are not scrolled.

It should be noted at this stage that 2CHR$(26) clears the entire array. So assuming
we're using the full screen window as bound at start-up then screen clears should be exe-
cuted using 2CHR$(30).

A similar technique could be used on the UK101 where 768 bytes of RAM are used for the
video display, leaving 256 bytes of unused RAM. And also on the Superboard Il where
625 bytes of RAM are used for the display, leaving 399 bytes of free RAM. However in the

- case of the Superboard only 244 bytes (to the ‘right’ of the screen) may be used in this

manner.

The appropriate values for the UK101 and Superboard are:
UK1071: DEF FNA(X)=53295+X+48*INT((X-1)/16) 0<X=256
Superboard: DEF FNA(X)=53275+X+25*INT((X-1)/7) 0<X=224

HELP!

We do try to satisfy everyone’s needs, but there is a definite limit to what we can do our-
selves in the way of research and experimentation — and we overshot that limit some
months ago! We need help in sorting out the many queries that arise, and in researching a
number of specific items that have arisen over the past few months.

A few issues back | asked for volunteers to help check out queries, particularly on the
C1 and UK101. A lot of members replied — and to them | must apologise, because while
I managed to acknowledge a few, | haven’t been able to invent the time to sort out and
distribute the mass of queries! In the meantime, plenty more queries have come in....

We also have the problem of this Newsletter’s direction. We (George, Richard and my-
self) now have some two years’ experience of OSI systems behind us; we are apt to forget

21

E——

#

¢

that some of our members may have only had their machines for a couple of weeks by the
lime they receive their first Newsletter. We are perhaps too deeply involved in machine-
codean interest reflected by many members, but certainly not by allt We do feel that
the proper role of the Newsletter is one of documentation and description — we tend to
prefer atility programs to games, for example, on the assumption that these will be of
wider use — and that lenghty programs are best described in the “‘comics” like PCW and
1C. tor UKTOT members, there is also the UKT01 Users Group (it advertises itself as
‘Computer Aids” in the comics), which specialises in general software. But you may feel
otherwise: should we limit the Newsletter to dealing only with BASIC-in-ROM programs,
lor example?

In any case, here are a number of specific items that now urgently need research:
New monitors — There are now a bewildering variety of monitors for the OSEand Comp
machines, particularly for the C1/Superboard and UKTO 1. The software houses are going
quictly crazy trying to make their software automatic ally adjust for the different input/out-
put routines, screen handling and God only knows what else! We're getting a similar
stream of queries from members, mostly on the lines of “My existing software won't run
on nnnMon, why not?” So we need to collate a list of the start locations of all manner of
routines in all of the monitors: not just the input/output vectors, but points like the ma-
chine-code monitor’s load entry point, which is used for auto-load of machine-code in
mixed BASIC/machine-code programs. We already have listings of OSI's SYNMON,
SYNGOO and 65A (hard disk) ROMs, of the CEGMON variants and of CTS's depressingly
similar IntaMon; so we particularly need to know about Watiord’s WEMON, the range of
Comp monitors from the original UKMon to NewMon02, and the ROM issued by the au-
thor of the Practical Electronics editor program — and any other monitor you may have
come across. We would like to do a feature on this next issue — but please send us a sim-
ple listof entry points, or else we may find ourselves landed with a copyright action if we
publish more!

WAIT ~ WAIT is the only BASIC-in-ROM instruction left that has not been covered either
in the original documentation or in this Newsletter. We particularly need to know about
uses for its ORing and EORing sections on the full WAIT instruction WAIT 1,],K.

[Jisk BASIC in earlier issues of this Newsletter we dealt with the zero-page pointers
and storage tormats of ROM BASIC; we have not yet had the time to complete the list, or
to do anything of the kind for the disk BASICs. In addition to information on zero page us-
age, we also need to update the somewhat limited POKE list into disk BASIC itself.
Assemibler utilities — the Assembler is short of some useful utilities which would make it
areally powertul tool. One which know I need in my work is a ‘search’ facility -— one
which would list out the line numbers in which a given label appears. Easy enough in
BASIC, not so casy in Machine-code — any takers?

Sottware conversions: OSI/Pet/Apple/Acorn and others — most 6502-based machines
use POKE-type graphics ior one reason or another. It would be useful to have a video me-
mory map for the non-OSI machines, and especially — it anyone fancies tackling it — a
program to convert graphics from one type to another.

7\

The back /ée program

By popular request(!) we're including a regular short-program feature, the ‘Back Page Pro-
gram’. As it happens, this one, by C. Hurt of Bristol, is a CEGMON utility; but what we'd
like for this section is lighter items — games, puzzles and the like. Keep the program —
BASIC or machine-code — under fifty lines total, so it will fit on the back page; and please
send it to us either as a clean print-out or on cassette or disk — that way there’s less chance
of typo errors creeping in. Let’s see what you can send us for next issue — all contributions
will be acknowledged on this page!

10 REM x UK 101 - 32 X 48 FORMAT x
20 REM x CEGMON MONITOR 101 E ¥
30 CL$=CHRS$ (26) : PRINTCLS$;
40 PRINT:PRINT:POKES18, 30
50 PRINTTAR(5) "PROGRAM TO CALCULATE"
60 PRINT:PRINT
70 PRINTTAB(8)"LOW & HIGH BYTE NUMBERS"
80 PRINT:PRINT
90 PRINTTAB(11) "FOR SCREEN-HANDLER"
100 PRINT:PRINT:PRINT
i 110 PRINTTAB(7)"Columns - 1 to 47 (CL)"
120 PRINT:PRINT
130 PRINTTAB(7) "Lines -1 to 32 (X top)"
140 PRINT
150 PRINTTAB(26) " (Y base)"
160 PRINT:PRINT:PRINT:PRINT
170 PRINTTAB(S) "After first - press space bar"
180 PRINT
190 PRINTTAB(18) "For next"
i 200 FORP=1TO7000:NEXTP
o 210 PRINTCLS$;
220 PRINT
230 INPUT" WINDOW WIDTH";W
g 240 PRINT
250 INPUT"™ COLUMN NUMBER";CL
i 260 IFW+CL >47THENGOTO230
I 270 IFCL<10RCL >47THENGOTO250
280 PRINT:PRINT:PRINT
290 INPUT" START — No.TOP LINE";X
300 IFX<10RX>32THENGOTO290
310 60SUBS20: 60SUB620
320 TL=K+CL-1

330 PRINT
| 340 PRINT" WINDOW - TOP LEFT (Bytes) LOW HIGH"
i 350 PRINT
4 360 PRINTTAB(31)3TL3" “3M

370 MT=M

380 PRINT:PRINT:PRINT:PRINT

390 INPUT" START — No.BOTTOM LINE";Y
400 IFY<10RY>32THENGOTO390

410 IFY<XTHENBOTO390

420 GOSUBS70:G0OSUB&30

430 BL=L+CL-1

bi 440 PRINT
i 450 PRINT" WINDOW — BOTTOM LEFT (Bytes) LOW HIGH"
F 460 PRINT
¥ 470 PRINTTAB(31);3;BL3;" "3M
480 MB=M:GOT0650 ‘

| 490 POKES30, 1:POKES7088, 253
i 500 IFPEEK (57088)<>239THENGOT0490

i 510 IFPEEK (57088)=239THENGOTO210

! 520 IFX/4=INT(X/4) THENK=205

530 IF(X+1)/4=INT((X+1)/4) THENK=141

540 IF (X+2)/4=INT ((X+2)/4) THENK=77 ‘
550 IF (X+3)/4=INT ((X+3)/4) THENK=13 :
560 LB(1)=K:RETURN

570 IFY/4=INT(Y/4) THENL=205

580 IF (Y+1)/4=INT((Y+1)/4) THENL=141

S90 IF(Y+2) /4=INT ((Y+2) /4) THENL=77

600 IF(Y+3' “3=INT ((Y+3) /4) THENL=13

610 LB(2) TURN

620 C=INT 1) +1: 60T0640

630 C=INT(Y/4.1)+1

640 M=207+C:RETURN

650 PRINT:PRINT

660 PRINTTAB(S5) "POKES46, ";W

670 PRINTTAB(S) "POKES47, ";TL; ": POKES48, ";MT
680 PRINTTAB (5) "POKES49, ";BL; ": POKESS0, ";MB

690 GOTD490)
Allitems @ 1981 OSEUK User Group, unless otherw ise stated.

